LightGBM分类
# 1、作用
LightGBM 是 XGBoost 一种高效实现,其思想是将连续的浮点特征离散成 k 个离散值,并构造宽度为 k 的直方图。然后遍历训练数据,计算每个离散值在直方图中的累计统计量。在进行特征选择时,只需要根据直方图的离散值,遍历寻找最优的分割点;且使用带有深度限制的按叶子生长(leaf-wise)策略,节省了不少时间和空间上的开销。
# 2、输入输出描述
输入:自变量 X 为 1 个或 1 个以上的定类或定量变量,因变量 Y 为一个定类变量。
输出:模型的分类结果和模型分类的评价效果。
# 3、案例示例
根据红酒的颜色强度,脯氨酸,类黄酮等变量,生成一个能够区分琴酒,雪莉,贝尔摩德三种品种的红酒的 lightGBM。
# 4、案例数据
lightGBM 分类案例数据
# 5、案例操作
Step1:新建分析;
Step2:上传数据;
Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;
step4:选择【lightGBM 分类】;
step5:查看对应的数据数据格式,按要求输入【lightGBM 分类】数据;
step6:进行参数设置(“更多设置”里的参数在客户端可进行设定)
step7:点击【开始分析】,完成全部操作。
# 6、输出结果分析
输出结果 1:模型参数
图表说明: 上表展示了训练该模型的时候,输入的参数以及训练所耗的时间。
输出结果 2:特征重要性
图表说明:上柱形图或表格展示了各特征(自变量)的重要性比例。(附:有时候可以利用特征重要性反推该变量在实际生活中的价值,因为该重要性往往决定分类结果。)
分析:lightGBM 模型中决定分类结果的重要因素是颜色强度、类黄酮、色调。
输出结果 3:混淆矩阵热力图
图表说明: 上表以热力图的形式展示了混淆矩阵,可以通过右上角切换在测试数据集和训练数据集中的情况。
分析:
上图是训练集的分类结果,所有样本分类正确,说明分类效果极好。
下图是测试集的分类结果,绝大部分样本分类正确,只有 2 个被分错的样本,说明训练集训练出来的模型结果是有效实用的。
输出结果 4:模型评估结果
图表说明: 上表中展示了训练集和测试集的分类评价指标,通过量化指标来衡量 lightGBM 对训练、测试数据的分类效果。
● 准确率:预测正确样本占总样本的比例,准确率越大越好。
● 召回率:实际为正样本的结果中,预测为正样本的比例,召回率越大越好。
● 精确率:预测出来为正样本的结果中,实际为正样本的比例,精确率越大越好。
● F1:精确率和召回率的调和平均,精确率和召回率是互相影响的,虽然两者都高是一种期望的理想情况,然而实际中常常是精确率高、召回率就低,或者召回率低、但精确率高。若需要兼顾两者,那么就可以用 F1 指标。
分析:
训练集的各分类评价指标都大于 0.9,说明模型在训练集的分类效果极好,模型具有实用性。
测试集的各分类评价指标都大于 0.9,说明模型在测试集的分类效果极好,模型具有实用性。
输出结果 5:测试数据预测评估结果
图表说明: 上表格为预览结果,只显示部分数据,全部数据请点击下载按钮导出。
上表展示了 lightGBM 模型对测试数据的分类结果,第一列是预测结果,第二列是因变量真实值,第三、四、五列分别是对所属每一个分类水平概率的预测结果,最终分类预测结果值是拥有最大预测概率的分类组别。
输出结果 6:模型预测与应用(此功能只在客户端支持使用)
注:当无法进行预测功能时,可检查数据集中是否存在定类变量或者缺失值:
● 当存在定类变量时,请在用于训练模型的数据集和用于预测的数据集中将变量编码,再进行操作。
(SPSSPRO:数据处理->数据编码->将定类变量编码为定量)
● 当用于预测数据的数据集中存在缺失值时,请删去缺失值再进行操作。
情况 1:在上面模型评估后,模型分类结果较好,具有实用性,这时我们将该模型进行应用。点击【模型预测】上传文件可以直接得到预测结果。
情况 2:若是上传的数据包括因变量真实值,不仅仅可以得到预测结果,还可以得到当前数据分类混淆矩阵和分类评价效果。
# 7、注意事项
- 由于 lightGBM 具有随机性,每次运算的结果不一样。若需要保存本次训练模型,需要使用 SPSSPRO 客户端进行。
- lightGBM 的参数修改需要使用 SPSSPRO 客户端进行。
# 8、模型理论
在讨论 LightGBM 时,不可避免的会提到 XGboost,关于 XGboost 的不足之处主要有:
1)每轮迭代时,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。
2)预排序方法的时间和空间的消耗都很大。
LightGBM 相对于 XGBoost 算法,大大的降低了运行的速度,LightGBM 模型的优势:
1)直方图算法
直方图算法的基本思想是先把连续的浮点特征值离散化成 k 个整数,同时构造一个宽度为 k 的直方图。在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点。在 XGBoost 中需要遍历所有离散化的值,而在这里只要遍历 kk 个直方图的值。使用直方图算法有很多优点。首先,最明显就是内存消耗的降低,直方图算法不仅不需要额外存储预排序的结果,而且可以只保存特征离散化后的值。
后在计算上的代价也大幅降低,XGBoost 预排序算法每遍历一个特征值就需要计算一次分裂的增益,而直方图算法只需要计算 k 次(k 可以认为是常数),时间复杂度从 O(#data _ #feature) 优化到 O(k_ #features)。
2)LightGBM 的直方图做差加速
一个容易观察到的现象:一个叶子的直方图可以由它的父亲节点的直方图与它兄弟的直方图做差得到。通常构造直方图,需要遍历该叶子上的所有数据,但直方图做差仅需遍历直方图的 k 个桶。利用这个方法,LightGBM 可以在构造一个叶子的直方图后(父节点在上一轮就已经计算出来了),可以用非常微小的代价得到它兄弟叶子的直方图,在速度上可以提升一倍。
3)带深度限制的 Leaf-wise 的叶子生长策略
Level-wise 过一次数据可以同时分裂同一层的叶子,容易进行多线程优化,也好控制模型复杂度,不容易过拟合。但实际上 Level-wise 是一种低效的算法,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销,因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。
Leaf-wise 则是一种更为高效的策略,每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后分裂,如此循环。因此同 Level-wise 相比,在分裂次数相同的情况下,Leaf-wise 可以降低更多的误差,得到更好的精度。Leaf-wise 的缺点是可能会长出比较深的决策树,产生过拟合。因此 LightGBM 在 Leaf-wise 之上增加了一个最大深度的限制,在保证高效率的同时防止过拟合。
4)直接支持类别特征(即不需要做 one-hot 编码)
对于类别型的数据,我们通常将类别特征转化为 one-hot/哑变量编码。 然而,对于学习树来说这不是个好的解决方案。 原因是,对于一个基数较大的类别特征,学习树会生长的非常不平衡,并且需要非常深的深度才能来达到较好的准确率。lightGBM 先把直方图按每个类别的均值进行排序;然后按照均值的结果依次枚举最优分割点。
5)高效并行
LightGBM 还具有支持高效并行的优点。LightGBM 原生支持并行学习,目前支持特征并行和数据并行的两种。
1、特征并行的主要思想是在不同机器在不同的特征集合上分别寻找最优的分割点,然后在机器间同步最优的分割点。
2、数据并行则是让不同的机器先在本地构造直方图,然后进行全局的合并,最后在合并的直方图上面寻找最优分割点。
LightGBM 针对这两种并行方法都做了优化,在特征并行算法中,通过在本地保存全部数据避免对数据切分结果的通信;在数据并行中使用分散规约 (Reduce scatter) 把直方图合并的任务分摊到不同的机器,降低通信和计算,并利用直方图做差,进一步减少了一半的通信量。
# 9、参考文献
[1]Scientific Platform Serving for Statistics Professional 2021. SPSSPRO. (Version 1.0.11)[Online Application Software]. Retrieved from https://www.spsspro.com.
[2]Meng Q . LightGBM: A Highly Efficient Gradient Boosting Decision Tree. 2018.
[3]高亚男,王文倩,王建新. 集成模糊层级划分的 LightGBM 食品安全风险预警模型:以肉制品为例[J]. 食品科学,2021(1). DOI:10.7506/spkx1002-6630-20191210-104.